241 research outputs found

    Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry

    Get PDF
    Trends of column-averaged methane for the time period (1996, Sep 2011) are derived from the mid-infrared (mid-IR) solar FTIR time series at the Zugspitze (47.42° N, 10.98° E, 2964 m a.s.l.) and Garmisch (47.48° N, 11.06° E, 743 m a.s.l.). Trend analysis comprises a fit to the de-seasonalized time series along with bootstrap resampling for quantifying trend uncertainties. We find a positive trend during [1996, 1998] of 9.0 [3.2, 14.7] ppb yr<sup>−1</sup> for Zugspitze (95% confidence interval), an insignificant growth during [1999, mid 2006] of 0.8 [−0.1, 1.7] ppb yr<sup>−1</sup> (Zugspitze), and a significant renewed increase during [mid 2006, Sep 2011] of 5.1 [4.2, 6.0] ppb yr<sup>−1</sup> for Garmisch, which is in agreement with 4.8 [3.8, 5.9] ppb yr<sup>−1</sup> for Zugspitze. <br></br> The agreement of methane trends at the two closely neighboring FTIR sites Zugspitze and Garmisch within the uncertainties indicates a good station-to-station consistency as a basis for future trend analyses by the ground-based mid-IR FTIR network on the global scale. Furthermore, the Zugspitze FTIR trend for the time interval [Jul 2006, Jun 2009] is found to agree with the trend derived from SCIAMACHY (WFM-DOAS v2.0.2) data within the 95% confidence intervals. In case a 1000-km pixel selection radius around the Zugspitze is used, the confidence interval is narrower for the FTIR trend (6.9 [4.2, 9.5] ppb yr<sup>−1</sup>) compared to SCIAMACHY (7.1 [5.1, 8.6] ppb yr<sup>−1</sup>). If, however, a loosened pixel selection is used (≈1000-km half-width latitudinal band), the SCIAMACHY trend significance interval is narrower (6.8 [5.1, 8.6] ppb yr<sup>−1</sup>) compared to Zugspitze FTIR (5.7 [3.0, 8.3] ppb yr<sup>−1</sup>). <br></br> While earlier studies using surface network data revealed changes of 8.0 ± 0.6 ppb in 2007, 6.4 ± 0.6 ppb in 2008, and 4.7 ± 0.6 ppb in 2009 (Dlugokencky et al., 2011), our updated result proves that the renewed methane increase meanwhile has been persisting for >5 years [mid 2006, Sep 2011]. This is either the longest and largest positive trend anomaly since the beginning of systematic observations more than 25 years ago or the onset of a new period of strongly increasing CH<sub>4</sub> levels in the atmosphere. Several scenarios have been developed to explain the persistent increase observed, mainly invoking an increase in emissions from natural wetlands, an increase in fossil fuel-related emissions or a decrease in OH concentrations. However, more work is needed to fully attribute this increase to a particular source or sink

    Stratospheric and tropospheric NO<sub>2</sub> variability on the diurnal and annual scale: a combined retrieval from ENVISAT/SCIAMACHY and solar FTIR at the Permanent Ground-Truthing Facility Zugspitze/Garmisch

    Get PDF
    International audienceColumnar NO2 retrievals from solar FTIR measurements at the Zugspitze (47.42° N, 10.98° E, 2964 m a.s.l.), Germany were investigated synergistically with columnar NO2 retrieved from SCIAMACHY data by the University of Bremen scientific algorithm UB1.5 for the time span July 2002-October 2004. A new concept to match FTIR data to the time of satellite overpass makes use of the NO2 daytime increasing rate retrieved from the FTIR data set itself [+1.02(6)E+14 cm-2/h]. This measured increasing rate shows no significant seasonal variation. SCIAMACHY data within a 200-km radius around Zugspitze were considered, and a pollution-clearing scheme was developed to select only pixels corresponding to clean background (free) tropospheric conditions, and exclude local pollution hot spots. The resulting difference between SCIAMACHY and FTIR columns (without correcting for the different sensitivities of the instruments) varies between 0.60-1.24E+15 cm-2 with an average of 0.83E+15 cm-2. A day-to-day scatter of daily means of ?7-10% could be retrieved in mutual agreement from FTIR and SCIAMACHY. Both data sets are showing sufficient precisions to make this assessment. Analysis of the averaging kernels gives proof that at high-mountain-site FTIR is a highly accurate measure for the pure stratospheric column, while SCIAMACHY shows significant tropospheric sensitivity. Based on this finding, we set up a combined a posteriori FTIR-SCIAMACHY retrieval for tropospheric NO2, based upon the averaging kernels. It yields an annual cycle of the clean background (free) tropospheric column (-2, an average of 1.09E+15 cm-2, and an intermediate phase between that of the well known boundary layer and stratospheric annual cycles. The outcome is a concept for an integrated global observing system for tropospheric NO2 that comprises DOAS nadir satellite measurements and a set of latitudinally distributed mountain-site or clean-air FTIR stations
    corecore